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Abstract
We have come a long way since Alan Tuning first proposed the Artificial Intelligence (AI)
in modern computers in 1950s enabling them to response like a human brain under certain
conditions. But in order to perform various machine-learning operations such as image or
speech recognition, huge datasets need to be processed leading to massive power consumption.
Hence for the practical implementation and progress of AI with energy efficiency there is a
pressing need of new class of memory devices which can mimic the performance of human
brain at equivalent low energy. The focus of my PhD project is to develop such memory
element by controlled incorporation of metal ions into the insulating layer in Metal Oxide
Semiconductor (MOS) transistor which can be an innovative solution for muti-level (Analog;
for reference, Binary system represents two levels), non-volatile (stored data retained even
after power is off), Neuromorphic (mimics human brain response) memory device. Here I have
reported controlled incorporation of lithium ions in an additional deposited insulating polymer
layer in a metal-oxide-semiconductor capacitor and have shown that lithium ions motion in this
layer can be controlled externally which enables it to modify the conductivity of the device,
overall making it a promising candidate for the new generation memory element. Successfully
integrating this with present silicon-based integrated circuits can lead to a breakthrough in AI
in the future.
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Nobody phrases it this way, but I think that artificial intelligence is almost a

humanities discipline. It’s really an attempt to understand human intelligence and

human cognition.

— Sebastian Thrun
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Figure 1: von Neumann architecture4

Introduction
Modern computers are based on the architecture that is called von Neumann architecture, pro-
posed by John von Neumann in 1945. The basic principle of this architecture is that data and
instructions are stored in memory units, while the computation is carried out in processors. So,
the data and instructions need to be moved between memory and processors which are phys-
ically separated. This leads to the Von Neumann bottleneck: most of the energy and time are
consumed in data movement, rather than computation.

The biological brain has a radically different architecture and function compared to con-
ventional von Neumann computers. It has the following qualities:

• massively parallel, three-dimensionally organized, extremely compact

• amazingly energy efficient

• combines storage and computation

• fault and variation tolerant and robust

• self-learning and adaptive to changing environments

Hence, in data-centric computations, (e.g. machine-learning operations such as object, im-
age, and speech recognition) von Neumann machines are inefficient in terms of computation
time and energy consumption, whereas, Brain-inspired or in other words Neuromorphic com-
putation system incorporating the above features can significantly improve data-centric com-
putation tasks.
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Figure 2: Real vs Conventional Computation.1

Why do we need New Generation Computation?
We are living now in the era of data, incorporating over 50 billion devices networked together;
access to big computers, graphics cards and to gigantic datasets (billions of images for image
recognition task) to train neural networks leads to massively huge data sets that need to be
processed. Therefore, we need new models and device architectures for computation which
can process information without any significant physical separation between computation and
memory. This is where research into dedicated hardware for Neuromorphic Computing enters
the picture.

Neuromorphic Computing: Hardware Realisation
Because of the requirement for processing vast sets of training data, AI computation software is
only accessible to limited groups with extensive computation resources. The approach for per-
sonal smartphone apps is to upload to the cloud (i.e., a large server) with the results being sent
back to the mobile phone. Hence, for environmental and practical reasons there is a pressing
need to realise AI computation in hardware, at low power, on a local device.

Dedicated Integrated Circuits for Neuromorphic Computation: What is needed?
As mentioned above, the bottleneck in using conventional von Neumann architectures for per-
forming AI tasks is the large amount of data exchange between the memory and computation
sections of the computer. This suggests that the memory needs to be co-integrated with the
microprocessor. One approach is to integrate the memory directly above the core logic of
the processor using a monolithic 3D integration technology where multiple transistor layers
are fabricated above a single substrate and thus being 3-dimensional integration reducing the
feature size of the device. Also, if the memory could be comprised of multiple non-volatile
memory levels as opposed to two levels – it could save on chip area as well as power! This
requires innovative solutions for multi-level non-volatile memory, which can be processed at
temperature which allows it to be integrated directly above an existing silicon microprocessor.
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Neuromorphic Computation Element: Basic Examples
In the search for new type non-volatile memory solutions, different technologies have emerged
in research over the past years which includes different materials and their properties to modify
the conductivity of the device; despite being promising candidates for Neuromorphic hardware
elements they all have some limitations, such as their conductivity switching characteristics
between high conductive and low conductive states is non-ideal, also the number of times that
the memory device can perform write and erase cycle is limited. More importantly, they have
difficulty in achieving multilevel memory in true sense as they can mostly deliver two or three
level memory states (for reference present memory devices works at binary system, so they
have only two states 0 and 1).

My project: Overview of one of the most promising Neuro-
morphic Memory Hardware Elements
The Mainstream non-volatile memory technology of today is based on the complementary
metal-oxide semiconductor (CMOS) technology, where complementary and symmetrical pairs
of p-type and n-type MOS transistors incorporated circuits are used to perform various logic op-
erations. So, the ideal scenario for hardware-based computation would be on a single integrated
circuit, with the new neuromorphic functions being assimilated above an existing silicon-based
CMOS integrated circuit.

The essential feature for on-chip, brain inspired computing comprises of:2, 3

• low power, multilevel and non-volatile memory which can be programmed, read, and
reset electrically.

• the device should ideally exhibit linear and symmetric programming and erase response.

Successfully achieving this device will open the door to energy-efficient brain-inspired compu-
tation on-chip, without the necessity to go to the cloud, with the associated latency and energy
consumption.

Device Outline and Basic understanding of Switching
Human brain memory cells include neurons and synapses, where neurons transmit electrical
and chemical signals which travel via synapses reaching other neurons and thus communica-
tion between different parts of brain and nervous system takes place. To mimic this action
non-volatile electrochemical switches have been proposed as artificial synapses for neuromor-
phic computing. Such devices are referred to as ECRAM (Electro Chemical Random Access
Memory).

Fig. 3 illustrates the device structure of ECRAM, which forms the focus of my PhD, where
lithium (Li) ions in the electrolyte layer are controlled by the applied voltage and their move-
ment results in change of its conductance for synaptic weight update. This device develops on
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Figure 3: Device: Schematic diagram (a), deposited electrolyte polymer layer including lithium
ions and polymer chain, lithium ions movement confined to this layer - Schematic Diagram (b),
Optical Image of the polymer layer by AFM (c).

previously published work as the Li ions can modify the channel conductance without inser-
tion and removal of the Li ions in the semiconducting channel. The effect is purely through
electrostatics, and this has the potential to enhance the stability of the device. The amount of Li
ions drifting in the electrolyte layer is precisely controlled by the gate voltage and this process
is reversible, enabling symmetric update.

Electrical Measurement Results
To test the concept, a simplified device called a metal-oxide-capacitor (MOS) structures has
been fabricated. This cuts down on the process steps needed to fabricate the full transistor,
while alowing detailed examination of how the Li ion drifts in the polymer layer. To fabricate
the device at this first stage, the MOS capacitor has been prepared with a silicon substrate in-
corporating a thin (around 85nm) silicon dioxide layer on top of it, cleaned and spun on with
an electrolyte layer combining the polymer film doped with different concentration of a lithium
compound in an appropriate solvent. On applying gate voltage the response of the lithium ions
has been recorded, this has been acheieved using advanced probe station, voltage signal has
been applied on the sample and corresponding impedance and phase angle are meaured, the ap-
plied voltage is a DC bias, super-imposed by a small AC voltage on top of that. The impedance
and phase angle are then converted into a corresponding capacitance and conductance, which
varies with the DC gate voltage and the AC signal frequency, hence we get capacitance vs gate
voltage graph for a range of AC frequency for this device.

Figure 4 plots the capacitance versus gate voltage varying from -20V to + 20V for AC sig-
nal frequencies ranging between 1 kHz to 1 MHz. On applying negative gate voltage positive
lithium ions are attracted towards gate making the polymer layer more conductive while pos-
itive gate voltage does the opposite, it repulses positive ions from the gate towards the other
interface resulting decrease in conductivity of the polymer layer. For lower AC signal frequen-
cies (1 kHz), the Li ions in the polymer can fully follow the AC signal, and as a result the
electrolyte layer performs as an extension of the conductive gate, and the capacitance of the
device is the same as maximum capacitance of the oxide layer in absence of the polymer layer.
At higher frequencies, the Li ions can no longer follow the AC signal, and the electrolyte layer

The Boolean 2022 | Volume 6 | DOI:10.33178/boolean.2022.1.35 219



acts as another dielectric layer, reducing the overall capacitance of the structure. These results
demonstrate that the Li ion movement through the electrolyte layer can be controlled by the
gate voltage and the AC signal frequency.

Figure 4: Schematic diagram of lithium ions response to applied gate voltage – negative gate
voltage (a), positive gate voltage (b), Capacitance vs Voltage graph of the device (c).

Conclusion
The successful controlled incorporation of group 1 or group 2 metals like Lithium, Sodium,
and Potassium (Li, Na, K) into the dielectric layer during deposition and to further explore the
diffusion process and its dependence on voltage, time, and temperature gives us the opportunity
to explore this process as a new class of multi-level non-volatile memory and to design a full
device system to merge the fabric of memory and logic in future computation and this will en-
able to achieve a local device performing complex tasks at low power mimicking the biological
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brain.
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