LTBP2: Bridging our understanding of the extracellular matrix in cardiac fibrosis
DOI:
https://doi.org/10.33178/SMJ.2025.1.5Keywords:
cardiac fibrosis, LTBP2, ECM, Fibrosis MarkerAbstract
Cardiac fibrosis is a major driver of heart failure, with complex mechanisms contributing to its progression. One such contributor is latent transforming growth factor-beta binding protein-2 (LTBP2), a protein significantly upregulated in fibrotic tissues. Unlike other TGF-beta binding proteins, LTBP2 does not bind to TGF-beta, and its role in cardiac fibrosis is largely unexplored. However, LTBP2 is involved in key profibrotic signaling pathways, including those related to TGF-beta1, fibroblast growth factor-2 (FGF-2), caspase-3, and NF-kB, all of which are potential therapeutic targets. Notably, NF-kB signaling activation through LTBP2 in fibrosis progression has been identified as an important mechanism that warrants further investigation.
In addition to its role in cell signaling, LTBP2 is essential for maintaining microfibril structural integrity, particularly in tissues such as the eye. However, the specific contributions of LTBP2 and microfibrils to cardiac fibrosis remain to be fully elucidated. Furthermore, LTBP2’s early-stage upregulation and its presence in circulating serum highlight its potential as a biomarker for fibrotic diseases. Studies in pulmonary fibrosis and other organ systems have demonstrated that serum LTBP2 levels correlate with fibrosis progression and the differentiation of fibroblasts to myofibroblasts. These findings suggest that LTBP2 may serve as an early indicator of cardiac fibrosis.
Overall, the investigation of LTBP2’s role in cardiac fibrosis is crucial for understanding its therapeutic potential and for identifying new strategies to promote reparative fibrosis and prevent the progression to heart failure.
References
Gheorghe A, Griffiths U, Murphy A, Legido-Quigley H, Lamptey P, Perel P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018;18(1). doi:10.1186/s12889-018-5806-x
Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC. Cardiac Fibrosis. Circulation Research. 2016;118(6):1021-1040. doi:10.1161/circresaha.115.306565
Hinderer S, Schenke-Layland K. Cardiac fibrosis – A short review of causes and therapeutic strategies. Advanced Drug Delivery Reviews. 2019;146(1). doi:10.1016/j.addr.2019.05.011
Shah H, Hacker A, Langburt D, et al. Myocardial Infarction Induces Cardiac Fibroblast Transformation within Injured and Noninjured
Regions of the Mouse Heart. Journal of Proteome Research. 2021;20(5):2867-2881. doi:10.1021/acs.jproteome.1c00098
Jiang W, Xiong Y, Li X, Yang Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Frontiers in Cardiovascular Medicine. 2021;8(1). doi:10.3389/fcvm.2021.715258
Shi Y, Jones W, Beatty W, et al. Latent-transforming growth factor beta-binding protein-2 (LTBP-2) is required for longevity but not for development of zonular fibers. Matrix Biology. 2021;95(1):15-31. doi:10.1016/j.matbio.2020.10.002
Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences. 2013;71(4):549-574.
doi:10.1007/s00018-013-1349-6
Frangogiannis NG. Fibroblast—Extracellular Matrix Interactions in Tissue Fibrosis. Current Pathobiology Reports. 2016;4(1):11-18.
doi:10.1007/s40139-016-0099-1
Zaidi Y, Aguilar EG, Troncoso M, Ilatovskaya DV, DeLeon-Pennell KY. Immune regulation of cardiac fibrosis post myocardial infarction. Cellular Signalling. 2020;1(1):109837. doi:10.1016/j.cellsig.2020.109837
Park S, Ranjbarvaziri S, Lay FD, et al. Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis. Circulation.
;138(12):1224-1235. doi:10.1161/circulationaha.118.035420
Enomoto Y, Matsushima S, Shibata K, et al. LTBP2 is secreted from lung myofibroblasts and is a potential biomarker for idiopathic
pulmonary fibrosis. Clinical Science. 2018;132(14):1565-1580. doi:10.1042/cs20180435
Bai Y, Zhang P, Zhang X, Huang J, Hu S, Wei Y. LTBP-2 acts as a novel marker in human heart failure – a preliminary study. Biomarkers. 2012;17(5):407-415. doi:10.3109/1354750x.2012.677860
LEASK A. TGF-B, cardiac fibroblasts, and the fibrotic response. Cardiovascular Research. 2007;74(2):207-212. doi:10.1016/j.cardiores.2006.07.012
Robertson IB, Rifkin DB. Regulation of the Bioavailability of TGF-B and TGF-B-Related Proteins. Cold Spring Harbor Perspectives in Biology. 2016;8(6):a021907. doi:10.1101/cshperspect.a021907
Rifkin D, Sachan N, Singh K, Sauber E, Tellides G, Ramirez F. The role of LTBPs in TGF beta signaling. Developmental Dynamics.
;251(1):75-84. doi:10.1002/dvdy.331
Shi M, Zhu J, Wang R, et al. Latent TGF-B structure and activation. Nature. 2011;474(7351):343-349. doi:10.1038/nature10152
Yang Z, Mu Z, Dabovic B, et al. Absence of integrin-mediated TGFB1 activation in vivo recapitulates the phenotype of TGF-B1-null
mice. Journal of Cell Biology. 2007;176(6):787-793. doi:10.1083/jcb.200611044
Henderson NC, Arnold TD, Katamura Y, et al. Targeting of av integrin identifies a core molecular pathway that regulates fibrosis in
several organs. Nature Medicine. 2013;19(12):1617-1624. doi:10.1038/nm.3282
Park S, Ranjbarvaziri S, Zhao P, Ardehali R. Cardiac Fibrosis Is Associated With Decreased Circulating Levels of Full-Length CILP in
Heart Failure. JACC: Basic to Translational Science. 2020;5(5):432-443. doi:10.1016/j.jacbts.2020.01.016
Pang X, Lin X, Du J, Zeng D. LTBP2 knockdown by siRNA reverses myocardial oxidative stress injury, fibrosis and remodelling during
dilated cardiomyopathy. Acta Physiologica. 2019;228(3). doi:10.1111/apha.13377
Sideek MA, Smith J, Menz C, Adams JRJ, Cowin AJ, Gibson MA. A Central Bioactive Region of LTBP-2 Stimulates the Expression of
TGF-B1 in Fibroblasts via Akt and p38 Signalling Pathways. International Journal of Molecular Sciences. 2017;18(10):2114. doi:10.3390/ijms18102114
Menz C, Parsi MK, Adams JRJ, et al. LTBP-2 Has a Single High-Affinity Binding Site for FGF-2 and Blocks FGF-2-Induced Cell Proliferation. Addison CL, ed. PLOS ONE. 2015;10(8):e0135577. doi:10.1371/journal.pone.0135577
Yun YR, Won JE, Jeon E, et al. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration. Day R, ed.
Journal of Tissue Engineering. 2010;1(1):218142. doi:10.4061/2010/218142
Shi HX, Lin C, Lin BB, et al. The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PloS One.
;8(4):e59966. doi:10.1371/journal.pone.0059966
Fu X, Khalil H, Kanisicak O, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart.
Journal of Clinical Investigation. 2018;128(5):2127-2143. doi:10.1172/jci98215
Zou M, Zou J, Hu X, Zheng W, Zhang M, Cheng Z. Latent Transforming Growth Factor-B Binding Protein-2 Regulates Lung Fibroblast-to-Myofibroblast Differentiation in Pulmonary Fibrosis via NF-kB Signaling. Frontiers in Pharmacology. 2021;12(1). doi:10.3389/fphar.2021.788714
Inoue T, Ohbayashi T, Fujikawa Y, et al. Latent TGF-B binding protein-2 is essential for the development of ciliary zonule microfibrils. Human Molecular Genetics. 2014;23(21):5672-5682. doi:10.1093/hmg/ddu283
Ali M, McKibbin M, Booth A, et al. Null Mutations in LTBP2 Cause Primary Congenital Glaucoma. The American Journal of Human
Genetics. 2009;84(5):664-671. doi:10.1016/j.ajhg.2009.03.017
Kuehn MH, Lipsett KA, Menotti-Raymond M, et al. A Mutation in LTBP2 Causes Congenital Glaucoma in Domestic Cats (Felis catus).
Chidlow G, ed. PLOS ONE. 2016;11(5):e0154412. doi:10.1371/journal.pone.0154412
Hirai M, Horiguchi M, Ohbayashi T, Kita T, Chien KR, Nakamura T. Latent TGF-B-binding protein 2 binds to DANCE/fibulin-5 and
regulates elastic fiber assembly. The EMBO Journal. 2007;26(14):3283-3295. doi:10.1038/sj.emboj.7601768
BioRender. BioRender Software. 2024. Available from: https://biorender.com

Downloads
Published
License
Copyright (c) 2025 Ahsan Rashid, Scott P. Heximer

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.